Cosets of a group

This blog is about just putting one simple example of calculating left/right cosets of a group. In case you are interested in theory and theorems as well than please visit other sites though for convenience I will put one definition from wiki here.

If G is a group, and H is a subgroup of G, and g is an element of G, then
gH = {gh : h an element of H } is a left coset of H in G, and
Hg = {hg : h an element of H } is a right coset of H in G.

Example:
Let G be a symmetric group of order 3 so elements of group are as,
Group Elements i.e 'g' = {{ },{1,2},{2,3},{1,3},{1,2,3},{3,2,1}

There will be six subgroups to this group and to calculate cosets lets pick one such subgroup.So,
                          H= {{ },{1,2}}

Left Cosets: Now to calculate its cosets just apply permutation composition/multiplication with rest of the elements of group on the left as follows.
1. { }{ }{1,2} = {{ },{1,2}}.
2. {1,2}{ }{1,2} = {{1,2},{ }}.
3. {1,3}{ }{1,2} = {{1,3},{1,2,3}}.
4. {2,3}{ }{1,2} = {{2,3},{1,3,2}}.
5. {1,2,3}{ }{1,2} = {{1,2,3},{1,3}}.
6. {1,3,2}{ }{1,2} = {{1,3,2},{2,3}}.

Right Cosets: For calculating right cosets multiply/compose the subgroup as a whole with elements of group on right hand side.
1.{ }{1,2}{ } = {{ },{1,2}}.
2.{ }{1,2}{1,2} = {{1,2},{ }}.
3.{ }{1,2}{1,3} = {{1,3},{1,3,2}}.
4.{ }{1,2}{2,3} = {{2,3},{1,2,3}}.
5.{ }{1,2}{1,3,2} = {{1,3,2},{1,3}}.
6.{ }{1,2}{1,2,3} = {{1,2,3},{2,3}}.

Hope this tutorial helps you in understanding logic behind calculating cosets.

No comments:

Post a Comment

Disqus for http://programathing.blogspot.in/