NOTE: Please refresh the page if latex code is not converted to text
There is reference to "Self-action by conjugation" on GroupWiki. The following piece of code will generate the same table in Mathematica.
Here row element is $"g"$ and column element is $"h"$ and cell is filled with $"hgh^{-1}"$
CODE:
Module[{newlist = List[],
inlist = List[]}, {list = ele = GroupElements[SymmetricGroup[3]],
For[i = 1, i <= Length[list], i++,
For[k = 1, k <= Length[list], k++,
AppendTo[inlist,
PermutationProduct[list[[i]], list[[k]], InversePermutation[list[[i]]]]]]
{AppendTo[newlist, inlist], inlist = List[]}]
TableForm[newlist, TableHeadings -> {ele, ele}]}]
The elements in left most corner and top most row are the elements of group and rest of the cells are the interaction between them.
$\left(
\begin{array}{ccccccc}
& \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] \\
\end{array}
\right)$
There is reference to "Self-action by conjugation" on GroupWiki. The following piece of code will generate the same table in Mathematica.
Here row element is $"g"$ and column element is $"h"$ and cell is filled with $"hgh^{-1}"$
CODE:
Module[{newlist = List[],
inlist = List[]}, {list = ele = GroupElements[SymmetricGroup[3]],
For[i = 1, i <= Length[list], i++,
For[k = 1, k <= Length[list], k++,
AppendTo[inlist,
PermutationProduct[list[[i]], list[[k]], InversePermutation[list[[i]]]]]]
{AppendTo[newlist, inlist], inlist = List[]}]
TableForm[newlist, TableHeadings -> {ele, ele}]}]
OUTPUT:
No comments:
Post a Comment