NOTE: Please refresh the page if latex code is not converted to text
To see the meaning of generators of any group one must refer to wikipedia.
There is API in Mathematica to find the generators of any group. This blog is about how a group is generated from generating sets. This works fine for SymmetricGroup of order 3 but for order 4 it generates partial number of sets but definitely tells how it works
The case considered here is of Symmetric Group of order 3.
CODE:
Module[{newlist = List[], inlist = List[]},
{ele = SymmetricGroup[3],
list = GroupGenerators[ele],
Print["Generators=", list],
AppendTo[newlist, list];
For[i = 1, i <= Length[list], i++,
For[k = 1, k <= Length[list], k++,
{
Print[{list[[k]], list[[i]]},
"=" PermutationProduct[list[[k]], list[[i]]]],
AppendTo[inlist, {list[[k]], list[[i]]}],
AppendTo[inlist, PermutationProduct[list[[k]], list[[i]]]]
}]
{AppendTo[newlist, inlist], inlist = List[]}],
Print["NewList=", newlist];
}]
OUTPUT:
For SymmetricGroup[3]
Generating set = {{Cycles[{{1,2}}],Cycles[{{1,2,3}}]}
Generated group elements =
{{Cycles[{{1,2}}],Cycles[{{1,2}}]}=Cycles[{}],{Cycles[{{1,2,3}}],Cycles[{{1,2}}]}=Cycles[{{2,3}}]},{{Cycles[{{1,2}}],Cycles[{{1,2,3}}]}=Cycles[{{1,3}}],{Cycles[{{1,2,3}}],Cycles[{{1,2,3}}]}=Cycles[{{1,3,2}}]}}
For SymmetricGroup[4]
Generating set = {{Cycles[{{1,2}}],Cycles[{{1,2,3,4}}]},
Generated group elements =
{{Cycles[{{1,2}}],Cycles[{{1,2}}]}=Cycles[{}],
{Cycles[{{1,2,3,4}}],Cycles[{{1,2}}]}=Cycles[{{2,3,4}}]},
{{Cycles[{{1,2}}],Cycles[{{1,2,3,4}}]}=Cycles[{{1,3,4}}],
{Cycles[{{1,2,3,4}}],Cycles[{{1,2,3,4}}]}=Cycles[{{1,3},{2,4}}]}}
There shall be 24 elements but here we see only 6, but in similar fashion we can generate other elements of sets from generating sets.
To see the meaning of generators of any group one must refer to wikipedia.
There is API in Mathematica to find the generators of any group. This blog is about how a group is generated from generating sets. This works fine for SymmetricGroup of order 3 but for order 4 it generates partial number of sets but definitely tells how it works
The case considered here is of Symmetric Group of order 3.
CODE:
Module[{newlist = List[], inlist = List[]},
{ele = SymmetricGroup[3],
list = GroupGenerators[ele],
Print["Generators=", list],
AppendTo[newlist, list];
For[i = 1, i <= Length[list], i++,
For[k = 1, k <= Length[list], k++,
{
Print[{list[[k]], list[[i]]},
"=" PermutationProduct[list[[k]], list[[i]]]],
AppendTo[inlist, {list[[k]], list[[i]]}],
AppendTo[inlist, PermutationProduct[list[[k]], list[[i]]]]
}]
{AppendTo[newlist, inlist], inlist = List[]}],
Print["NewList=", newlist];
}]
OUTPUT:
For SymmetricGroup[3]
Generating set = {{Cycles[{{1,2}}],Cycles[{{1,2,3}}]}
Generated group elements =
{{Cycles[{{1,2}}],Cycles[{{1,2}}]}=Cycles[{}],{Cycles[{{1,2,3}}],Cycles[{{1,2}}]}=Cycles[{{2,3}}]},{{Cycles[{{1,2}}],Cycles[{{1,2,3}}]}=Cycles[{{1,3}}],{Cycles[{{1,2,3}}],Cycles[{{1,2,3}}]}=Cycles[{{1,3,2}}]}}
For SymmetricGroup[4]
Generating set = {{Cycles[{{1,2}}],Cycles[{{1,2,3,4}}]},
Generated group elements =
{{Cycles[{{1,2}}],Cycles[{{1,2}}]}=Cycles[{}],
{Cycles[{{1,2,3,4}}],Cycles[{{1,2}}]}=Cycles[{{2,3,4}}]},
{{Cycles[{{1,2}}],Cycles[{{1,2,3,4}}]}=Cycles[{{1,3,4}}],
{Cycles[{{1,2,3,4}}],Cycles[{{1,2,3,4}}]}=Cycles[{{1,3},{2,4}}]}}
There shall be 24 elements but here we see only 6, but in similar fashion we can generate other elements of sets from generating sets.
No comments:
Post a Comment