Referring to this GroupWiki information on Commutator group, the following piece of Mathematica code will achieve the same. For theoretical detail please avail the link.
The row element is $"g"$ and column element is $"h"$ and cells have $"ghg^{-1}h^{-1}"$.
CODE:
Module[{newlist = List[],
inlist = List[]}, {list = ele = GroupElements[SymmetricGroup[3]],
For[i = 1, i <= Length[list], i++,
For[k = 1, k <= Length[list], k++,
AppendTo[inlist,
PermutationProduct[list[[k]], list[[i]],
InversePermutation[list[[k]]],
InversePermutation[list[[i]]]]]]
{AppendTo[newlist, inlist], inlist = List[]}];
TableForm[newlist, TableHeadings -> {ele, ele}]
}]
OUTPUT:
The left most column and top most row are group elements and rest is the interaction between them.
$\left(
\begin{array}{ccccccc}
& \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
1 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] \\
\text{Cycles}\left[\left(
\begin{array}{cc}
1 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 3 & 2 \\
\end{array}
\right)\right] & \text{Cycles}\left[\left(
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\right)\right] & \text{Cycles}[\{\}] \\
\end{array}
\right)$
The left most column and top most row are group elements and rest is the interaction between them.
No comments:
Post a Comment